Curves on Complete Intersections and Measures of
Invationality joint with Nathan Chen, Junyan Zhao

$$Q: X \hookrightarrow \mathbb{P}^N$$
 if Λ linear space of dim n+1
 $dim=n$ then X is covered by curves of
the form $X \cap \Lambda$.
when do there exist "simplur" curves than
linear spices?
Thus A: if $X \hookrightarrow \mathbb{P}^{n+r}$ is a general complete
intersection of dim n and codim r
cut and by equations of degree $(d_{1},...,d_{r})$
then for $d_{1},...,d_{r} \ge N(n,r)$ we have
 $deg C \ge d_{1}\cdots d_{r}$ for any $C \subseteq X$.
(moreover if $d_{1},...,d_{r} \ge 2n$ then
 $deg C \ge (d_{1}-2n+1)\cdots (d_{r}-2n+1)$

$$\frac{3}{2} \frac{\text{Measures}}{\text{Irradionality}} = \frac{1}{1 \text{ Arradionality}} = \frac{1}{1 \text{ Arr$$

^

if $W_{1,...,W_r}$ Separate many points then I can ensure the sum is nonzero. if $W_{1,...,W_r}$ separate C general points of X then I can ensure that some trace is nonzero.

If
$$H^{0}(X, \omega_{X})$$
 separates c points of X
then $(\text{organ}(X) \ge C+1)$.
Subscription of P^{oints} :
 $\text{Write } X \subseteq Y$ Y is a complete intersection of type (d_{2}, \dots, d_{r})
X is a divisor
 $C \mid d_{1} \mid H \mid$.
Now $K_{X} = (K_{Y} + d_{1} \mid H) \mid_{X}$
To show separation of points is suffices to show
 $H^{1}(Y, O(K_{Y} + d_{1} \mid H) \odot T_{P_{1}, \dots, P_{r}}) = 0$ because then
 $H^{0}(Y, O(K_{Y} + d_{1} \mid H)) \Rightarrow H^{0}(Y, O(K_{Y} + d_{1} \mid H) \odot O_{P_{1},\dots, P_{r}})$
 \rightarrow then surjective.

)

S Proof of Thm A: idea is degenerate X min (d1,...,dr) $X_1 \cup_{\mathcal{Z}} X_2$ a+b=dX, · type (a, dz,...,dr) type (b, dz,..., dr) Χ2 Z type (a,b, d2,...,dr) Want: $\overline{C} \subset X_1 \cup_{\mathcal{Z}} X_2$ C SX m> $C_1 \cup C_2$

WRONG:

total family of degeneration idea 1 X is singular & exactly those the points.

$$Z \quad \text{outpide of } X^{\text{sing.}}.$$

$$Covdeg(X) \geq \min\{2 \text{ Covdeg}(X_1) + \text{ Covdeg}(X_2), \}$$

$$Covdeg(Z)$$

$$Then C: \quad \text{Covdeg}(X_{d_1,...,d_r}) \geq (d_1 - n + 1) \cdots (d_r - n + 1)$$

$$f^r \quad X_{d_{V-1},d_r} \leq \mathbb{D}^{n+v} \text{ general.}$$

$$\text{Results of } RY22 \quad \text{Grossmannian tegchniques}$$

Thm $C \Rightarrow Thm A$.